Effect of Vibrations on Pore Fluid Distribution in Porous Media
نویسندگان
چکیده
Understanding the role of shuttle vibrations in pore fluid distribution is an essential task in the exploration of plant growth in root modules aboard space flights. Results from experimental investigations are reported in this paper on the distribution of immiscible fluid phases in glass beads under vibrations. Hexadecane, a petroleum compound immiscible with and lighter than water, was used in the experiments. The higher freezing point of Hexadecane (18 ◦C) allowed the solidification of the entrapped blobs in the presence of water in porous media, so that their size distribution can be obtained. van Genuchten function, commonly used to express moisture retention curves, is found to be an adequate fit for blob size distribution at residual saturation. The effect of vibrations on the fate (mobilization, stranding, or breakup) of a solitary ganglion in porous media was studied using a network model. A mobility criterion considering viscous, gravity, and capillary forces was developed to determine the fate of a solitary ganglion in a porous medium. It is concluded that the effect of vibrations is to increase the likelihood of breakup and mobilization of blobs entrapped in porous media at residual saturation. The pore fluid distributions after vibrations are less uniform than those before vibrations.
منابع مشابه
Axi-Symmetric Deformation Due to Various Sources in Saturated Porous Media with Incompressible Fluid
The general solution of equations of saturated porous media with incompressible fluid for two dimensional axi-symmetric problem is obtained in the transformed domain. The Laplace and Hankel transforms have been used to investigate the problem. As an application of the approach concentrated source and source over circular region have been taken to show the utility of the approach. The transforme...
متن کاملAbsolute Permeability Calculation by Direct Numerical Simulation in Porous Media
Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کاملSensitivity Analysis of the Effect of Pore Structure and Geometry on Petrophysical and Electrical Properties of Tight Media: Random Network Modeling
Several methodologies published in the literature can be used to construct realistic pore networks for simple rocks, whereas in complex pore geometry formations, as formed in tight reservoirs, such a construction still remains a challenge. A basic understanding of pore structure and topology is essential to overcome the challenges associated with the pore scale modeling of tight porous media. A...
متن کاملA New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media
Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...
متن کامل